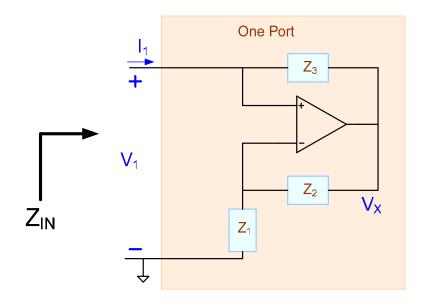

EE 230 Lecture 16

Nonideal Op Amp Characteristics

Review from Last Time

Differential Amplifiers

Instrumentation Amplifier

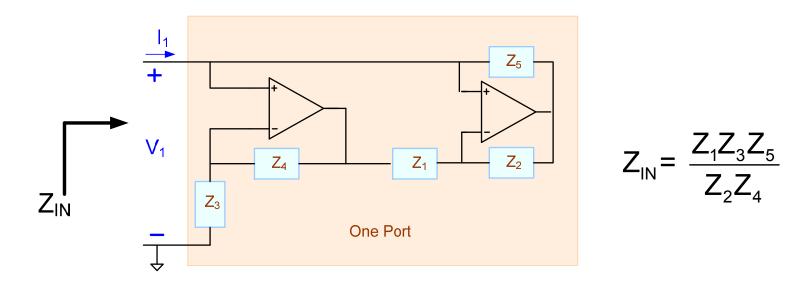


• Can reduce effects of dc offset if gain must be very large

• Must pick C to that frequencies of interest are in passband

Review from Last Time

Impedance Converters


$$V_1(G_1+G_2) = V_XG_2$$

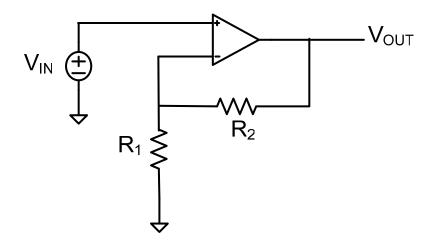
 $I_1 = (V_1-V_X)G_3$

$$Z_{\rm IN} = -\frac{Z_2}{Z_1 Z_3}$$

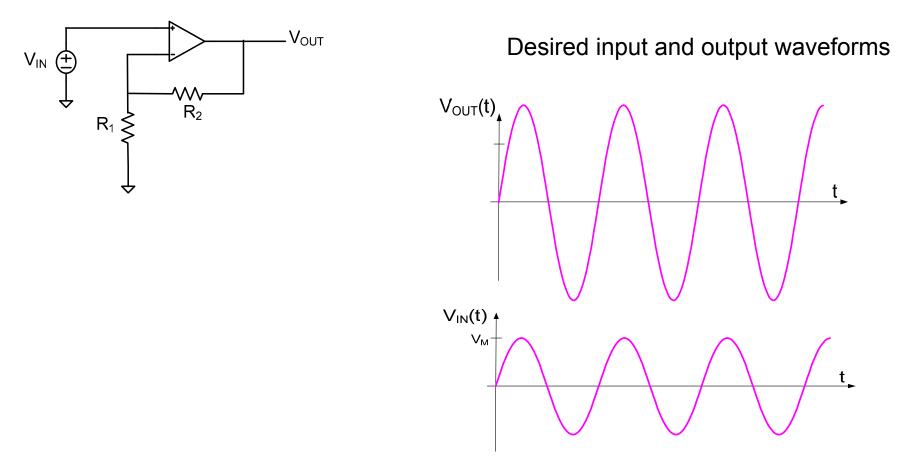
Observe this input impedance is negative!

Review from Last Time

Impedance Converters

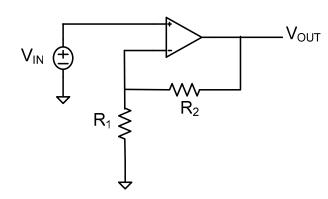

If $Z_1 = Z_3 = Z_4 = Z_5 = R$ and $Z_2 = 1/sC$ $Z_{IN} = (R^2C)s$ This is an inductor of value L=R²C If $Z_2 = R_2$, $Z_3 = R_3$, $Z_4 = R_4$, $Z_5 = R_5$ and $Z_1 = 1/sC$ $Z_{IN} = \frac{R_3R_5}{sCR_2R_4}$ This is a capacitor of value $C_{EQ} = C\frac{R_2R_4}{R_3R_5}$ (can scale capacitance up or down) If $Z_2 = Z_4 = Z_5 = R$ and $Z_1 = Z_3 = 1/sC$ $Z_{IN} = (R^3C^2)s^2$ This is a "super" capacitor of value R^3C^2

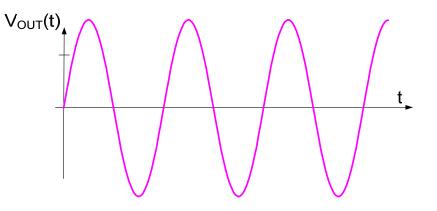
This circuit is often called a Gyrator

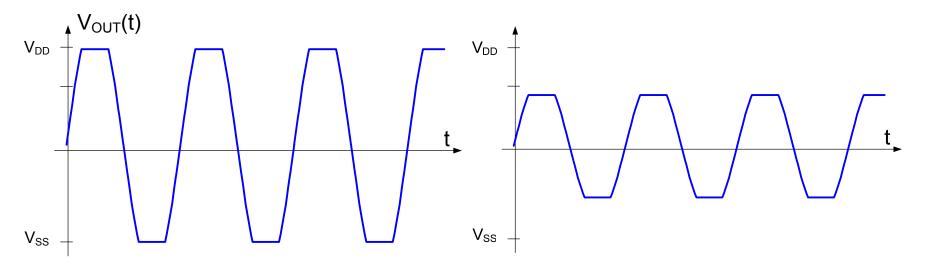

In even the most basic applications, the laboratory performance of the circuit often differs dramatically from what is predicted for some op amps.

With proper knowledge of the characteristics of the op amp, designers can usually design circuits that behave almost like what is expected with ideal op amps

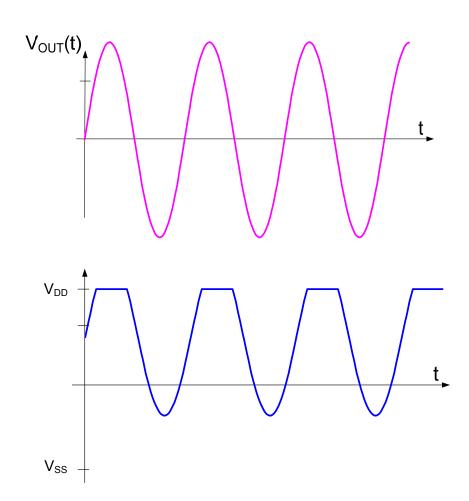
Essential to know nonideal properties of the op amp and how to manage them to be an effective design engineer

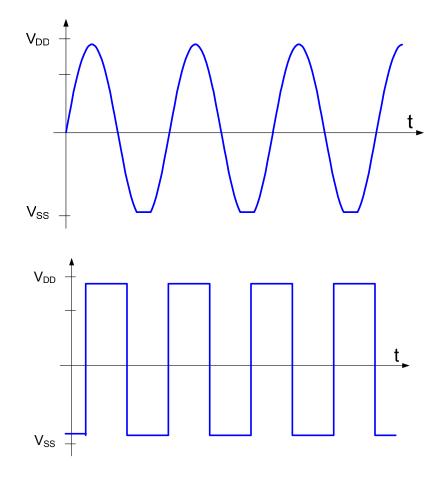



Example:


Desired output waveforms

Example:

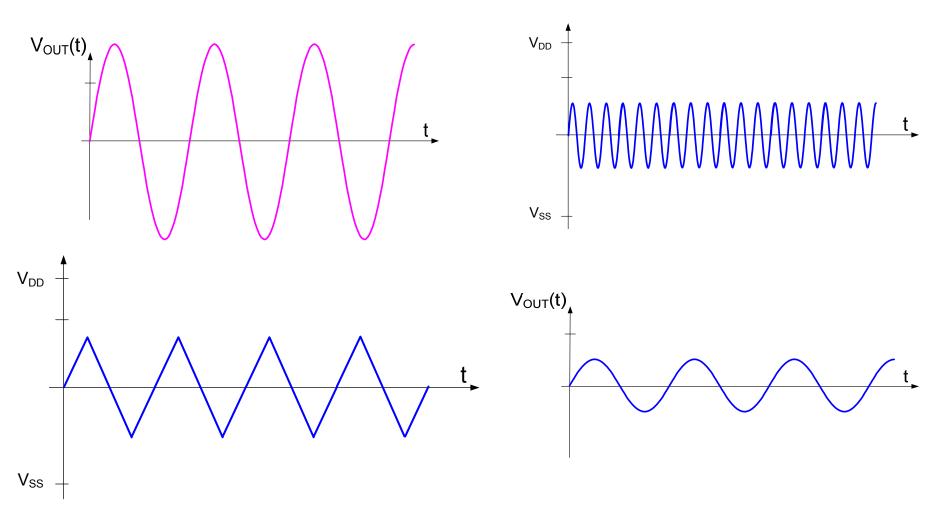

What can happen:

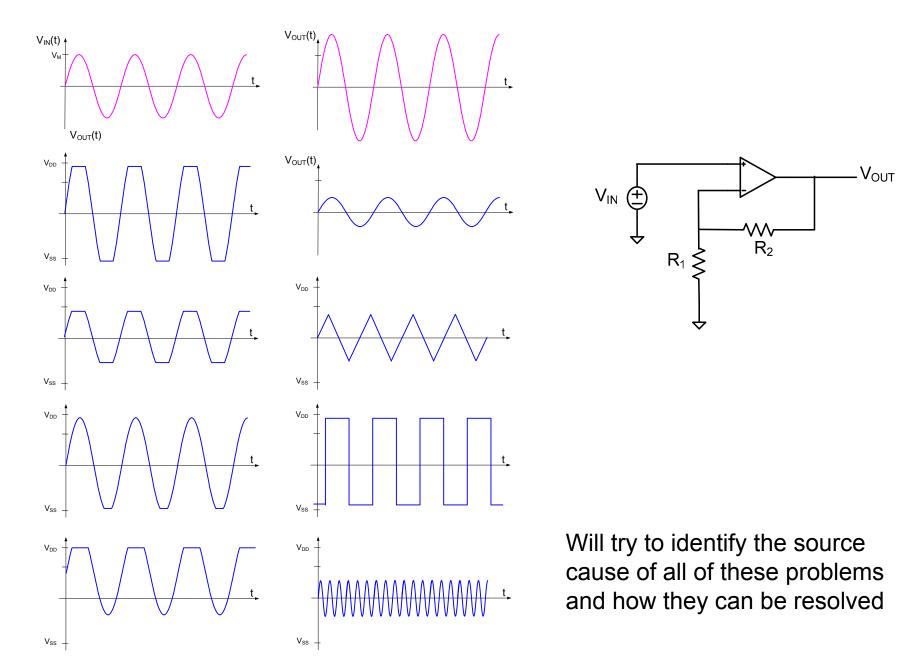


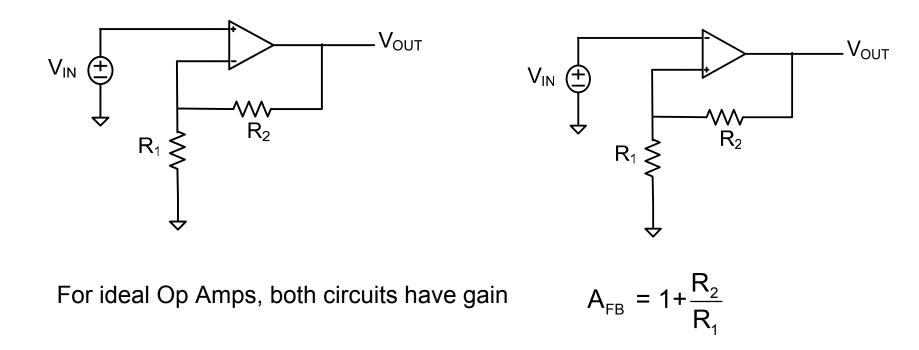
Desired output waveforms

Example:

What can happen:




Desired output waveforms


Example:

What can happen:

Some of the more common nonideal effects in Op Amp circuits

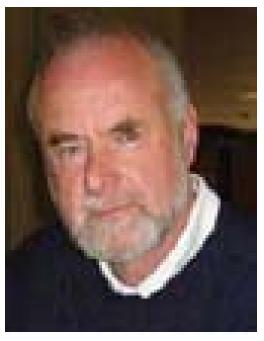
All op amp circuits that have been considered to date have a similar counterpart circuit but only one of the two circuits will perform as predicted

Must also observe what property of the nonideal op amp causes renders one to the two circuits ineffective and determine how to select the correct orientation

Inventor of two-stage Op Amp

Robert Widlar

(considered by many as the most brilliant integrated circuit designer ever)



Widlar began his IC career at Fairchild semiconductor in Sept 63 at age of approx 26 where he designed several pioneering op amps. By 1966, the commercial success of his designs became apparent, and Widlar asked for a raise. He was turned down, and jumped ship to the fledgling National Semiconductor. At National he continued to turn out amazing designs, and was able to retire just before his 30th birthday in 1970.

Inventor of the internally-compensated Op Amp

Dave Fullagar

(from posted www site)

- Joined Fairchild in Jan 1966 and asked to design an op amp
- His design was the first internally-compensate op amp, the 741
- Fullagar was 26 years old when this was designed (introduced) in 1968
- Largest selling integrated circuit ever
- Still in high-volume production even though over 40 years old
- Fullagar later started the linear design activities at Intersil
- Cofounder (catalyst) of Maxim

Nonideal Op Amp Characteristics

- Absolute Maximum Ratings
- Electrical Characteristics
 - -AC
 - DC

These are in the data sheets of the op amps along with connection information, occasionally application information, connection information, and sometimes even information about the design

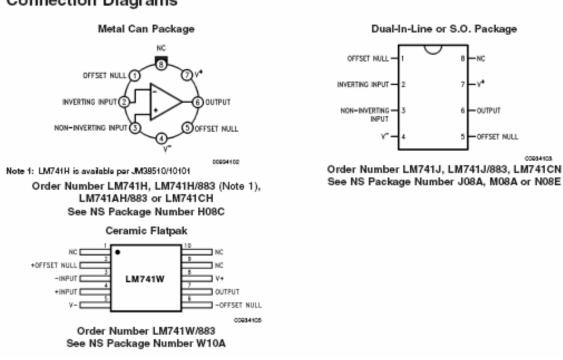
Application notes, available from almost all manufacturers, often give more general information, definitions, more extensive application information, and other useful details.

LM741 **Operational Amplifier**

General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and August 2000


00934103

LM741 Operational Amplifier

output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C is identical to the LM741/LM741A except that the LM741C has their performance guaranteed over a 0°C to +70°C temperature range, instead of -55°C to +125°C.

Features

Connection Diagrams

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 7)

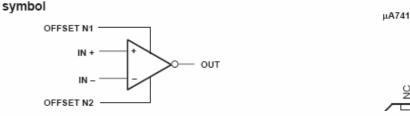
	LM741A	LM741	LM741C
Supply Voltage	±22V	±22V	±18V
Power Dissipation (Note 3)	500 mW	500 mW	500 mW
Differential Input Voltage	±30V	±30V	±30V
Input Voltage (Note 4)	±15V	±15V	±15V
Output Short Circuit Duration	Continuous	Continuous	Continuous
Operating Temperature Range	-55°C to +125°C	-55°C to +125°C	0°C to +70°C
Storage Temperature Range	-65°C to +150°C	-65°C to +150°C	-65°C to +150°C
Junction Temperature	150°C	150°C	100°C
Soldering Information			
N-Package (10 seconds)	260°C	260°C	260°C
J-or H-Package (10 seconds)	300°C	300°C	300°C
M-Package			
Vapor Phase (60 seconds)	215°C	215°C	215°C
Infrared (15 seconds)	215°C	215°C	215°C
See AN-450 *Surface Mounting Meth	ods and Their Effect o	on Product Reliability*	for other methods of
soldering			
surface mount devices.			
ESD Tolerance (Note 8)	400V	400V	400V

Parameter	Conditions		LM741A LM741 LM741C		LM741C		Units				
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	T _A = 25°C										
	R _S ≤ 10 kΩ					1.0	5.0		2.0	6.0	mV
	$R_{\rm S} \le 50 \Omega$		0.8	3.0							mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_{\rm S} \le 50 \Omega$			4.0							mV
	R _S ≤ 10 kΩ						6.0			7.5	mV
Average Input Offset				15							µV/°C
Voltage Drift											
Input Offset Voltage	T _A = 25°C, V ₈ = ±20V	±10				±15			±15		m۷
Adjustment Range											
Input Offset Current	T _A = 25°C		3.0	30		20	200		20	200	nA
	$T_{AMIN} \leq T_{A} \leq T_{AMAX}$			70		85	500			300	nA
Average Input Offset				0.5							nA∕°C
Current Drift											
Input Bias Current	T _A = 25°C		30	80		80	500		80	500	nA
	$T_{AMIN} \leq T_A \leq T_{AMAX}$			0.210			1.5			0.8	μA
Input Resistance	T _A = 25°C, V _S = ±20V	1.0	6.0		0.3	2.0		0.3	2.0		MΩ
	$T_{AMIN} \leq T_{A} \leq T_{AMAX},$	0.5									MΩ
	$V_8 = \pm 20V$										
Input Voltage Range	T _A = 25°C							±12	±13		V
	$T_{AMIN} \le T_A \le T_{AMAX}$				±12	±13					V

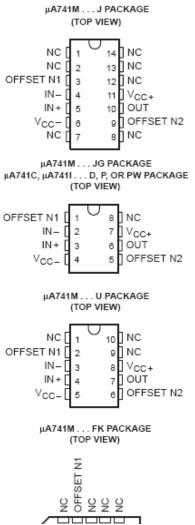
Output Voltage Swing	$\begin{split} T_{A} &= 25^{\circ}C, \ R_{L} \geq 2 \ k\Omega \\ V_{S} &= \pm 20V, \ V_{O} = \pm 15V \\ V_{S} &= \pm 15V, \ V_{O} = \pm 10V \\ \hline T_{AMN} &\leq T_{A} \leq T_{AMAX}, \\ R_{L} &\geq 2 \ k\Omega, \\ V_{S} &= \pm 20V, \ V_{O} = \pm 15V \\ V_{S} &= \pm 15V, \ V_{O} = \pm 10V \\ \hline V_{S} &= \pm 5V, \ V_{O} = \pm 2V \\ \hline V_{S} &= \pm 20V \\ \hline R_{L} &\geq 10 \ k\Omega \\ \hline R_{L} &\geq 10 \ k\Omega \\ \hline R_{L} &\geq 10 \ k\Omega \end{split}$	Min 50 32 10 ±16 ±15	Тур	Max	Min 50 25	Тур 200	Max	Min 20 15	Тур 200	Max
Output Voltage Swing	$\begin{split} V_S &= \pm 20V, \ V_O &= \pm 15V \\ V_S &= \pm 15V, \ V_O &= \pm 10V \\ T_{AMIN} &\leq T_A \leq T_{AMAX}, \\ R_L &\geq 2 \ k\Omega, \\ V_S &= \pm 20V, \ V_O &= \pm 15V \\ V_S &= \pm 15V, \ V_O &= \pm 10V \\ V_S &= \pm 5V, \ V_O &= \pm 2V \\ V_S &= \pm 20V \\ R_L &\geq 10 \ k\Omega \\ R_L &\geq 2 \ k\Omega \\ V_S &= \pm 15V \\ R_L &\geq 10 \ k\Omega \end{split}$	32 10 ±16								
Output Voltage Swing	$\begin{split} V_S &= \pm 20V, \ V_O &= \pm 15V \\ V_S &= \pm 15V, \ V_O &= \pm 10V \\ T_{AMIN} &\leq T_A \leq T_{AMAX}, \\ R_L &\geq 2 \ k\Omega, \\ V_S &= \pm 20V, \ V_O &= \pm 15V \\ V_S &= \pm 15V, \ V_O &= \pm 10V \\ V_S &= \pm 5V, \ V_O &= \pm 2V \\ V_S &= \pm 20V \\ R_L &\geq 10 \ k\Omega \\ R_L &\geq 2 \ k\Omega \\ V_S &= \pm 15V \\ R_L &\geq 10 \ k\Omega \end{split}$	32 10 ±16				200			200	
Output Voltage Swing	$\begin{array}{l} T_{\text{AMIN}} \leq T_{\text{A}} \leq T_{\text{AMAX}}, \\ R_{\text{L}} \geq 2 \ k\Omega, \\ V_{\text{S}} = \pm 20V, \ V_{\text{O}} = \pm 15V \\ V_{\text{S}} = \pm 15V, \ V_{\text{O}} = \pm 10V \\ \hline V_{\text{S}} = \pm 5V, \ V_{\text{O}} = \pm 20V \\ \hline V_{\text{S}} = \pm 20V \\ R_{\text{L}} \geq 10 \ k\Omega \\ \hline R_{\text{L}} \geq 2 \ k\Omega \\ \hline V_{\text{S}} = \pm 15V \\ \hline R_{\text{L}} \geq 10 \ k\Omega \end{array}$	10 ±16				200			200	
Output Voltage Swing	$\begin{array}{l} T_{\text{AMIN}} \leq T_{\text{A}} \leq T_{\text{AMAX}}, \\ R_{\text{L}} \geq 2 \ k\Omega, \\ V_{\text{S}} = \pm 20V, \ V_{\text{O}} = \pm 15V \\ V_{\text{S}} = \pm 15V, \ V_{\text{O}} = \pm 10V \\ \hline V_{\text{S}} = \pm 5V, \ V_{\text{O}} = \pm 20V \\ \hline V_{\text{S}} = \pm 20V \\ R_{\text{L}} \geq 10 \ k\Omega \\ \hline R_{\text{L}} \geq 2 \ k\Omega \\ \hline V_{\text{S}} = \pm 15V \\ \hline R_{\text{L}} \geq 10 \ k\Omega \end{array}$	10 ±16			25			15		
Output Voltage Swing	$\begin{array}{l} {\sf R}_L \geq 2 \; k\Omega, \\ {\sf V}_S = \pm 20 {\sf V}, \; {\sf V}_O = \pm 15 {\sf V} \\ {\sf V}_S = \pm 15 {\sf V}, \; {\sf V}_O = \pm 10 {\sf V} \\ {\sf V}_S = \pm 5 {\sf V}, \; {\sf V}_O = \pm 2 {\sf V} \\ {\sf V}_S = \pm 20 {\sf V} \\ {\sf R}_L \geq 10 \; k\Omega \\ {\sf R}_L \geq 2 \; k\Omega \\ {\sf V}_S = \pm 15 {\sf V} \\ {\sf R}_L \geq 10 \; k\Omega \end{array}$	10 ±16			25			15		
Output Voltage Swing	$\begin{split} &V_{S} = \pm 15 V, \ V_{O} = \pm 10 V \\ &V_{S} = \pm 5 V, \ V_{O} = \pm 2 V \\ &V_{S} = \pm 20 V \\ &R_{L} \ge 10 \ k\Omega \\ &R_{L} \ge 2 \ k\Omega \\ &V_{S} = \pm 15 V \\ &R_{L} \ge 10 \ k\Omega \end{split}$	10 ±16			25			15		
Output Voltage Swing	$\begin{split} &V_{S} = \pm 15 V, \ V_{O} = \pm 10 V \\ &V_{S} = \pm 5 V, \ V_{O} = \pm 2 V \\ &V_{S} = \pm 20 V \\ &R_{L} \ge 10 \ k\Omega \\ &R_{L} \ge 2 \ k\Omega \\ &V_{S} = \pm 15 V \\ &R_{L} \ge 10 \ k\Omega \end{split}$	±16			25			15		
Output Voltage Swing	$\begin{split} &V_S=\pm 5V,V_O=\pm 2V\\ &V_S=\pm 20V\\ &R_L\geq 10k\Omega\\ &R_L\geq 2k\Omega\\ &V_S=\pm 15V\\ &R_L\geq 10k\Omega \end{split}$	±16								
Output Voltage Swing	$V_S = \pm 20V$ $R_L \ge 10 k\Omega$ $R_L \ge 2 k\Omega$ $V_S = \pm 15V$ $R_L \ge 10 k\Omega$	1								
-	$R_L \ge 10 \text{ k}\Omega$ $R_L \ge 2 \text{ k}\Omega$ $V_S = \pm 15V$ $R_L \ge 10 \text{ k}\Omega$	1								
	$R_L \ge 2 k\Omega$ $V_S = \pm 15V$ $R_L \ge 10 k\Omega$	±15								
	V _S = ±15V R _L ≥ 10 kΩ									
	 R≥ 10 kΩ									
	-				±12	±14		±12	±14	
	$R_L \ge 2 k\Omega$				±10	±13		±10	±13	
	T _A = 25°C	10	25	35		25			25	
· /	$T_{AMIN} \le T_A \le T_{AMAX}$	10		40						
	$T_{AMIN} \le T_A \le T_{AMAX}$									
I	R _S ≤ 10 kΩ, V _{CM} = ±12V				70	90		70	90	
-	R ₈ ≤ 50Ω, V _{CM} = ±12V	80	95							
	$T_{AMIN} \le T_A \le T_{AMAX}$									
	$V_s = \pm 20V$ to $V_s = \pm 5V$									
	R ₈ ≤ 50Ω	86	96							
	R ₈ ≤ 10 kΩ				77	96		77	96	
	T _A = 25°C, Unity Gain									
Rise Time			0.25	0.8		0.3			0.3	
Overshoot			6.0	20		5			5	
Bandwidth (Note 6)	T _A = 25°C	0.437	1.5							
Slew Rate	T _A = 25°C, Unity Gain	0.3	0.7			0.5			0.5	
	T _A = 25°C					1.7	2.8		1.7	2.8
Power Consumption	T _A = 25°C									
	$V_{S} = \pm 20V$		80	150						
1	$V_{S} = \pm 15V$					50	85		50	85
E E	V _S = ±20V									
I	T _A = T _{AMIN}			165						
I	T _A = T _{AMAX}			135						
	V _S = ±15V									
I	T _A = T _{AMIN}					60	100			

LM741

μΑ741, μΑ741Υ GENERAL-PURPOSE OPERATIONAL AMPLIFIERS


- Short-Circuit Protection
- Offset-Voltage Null Capability
- Large Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-Up
- Designed to Be Interchangeable With Fairchild µA741

description


The µA741 is a general-purpose operational amplifier featuring offset-voltage null capability.

The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2.

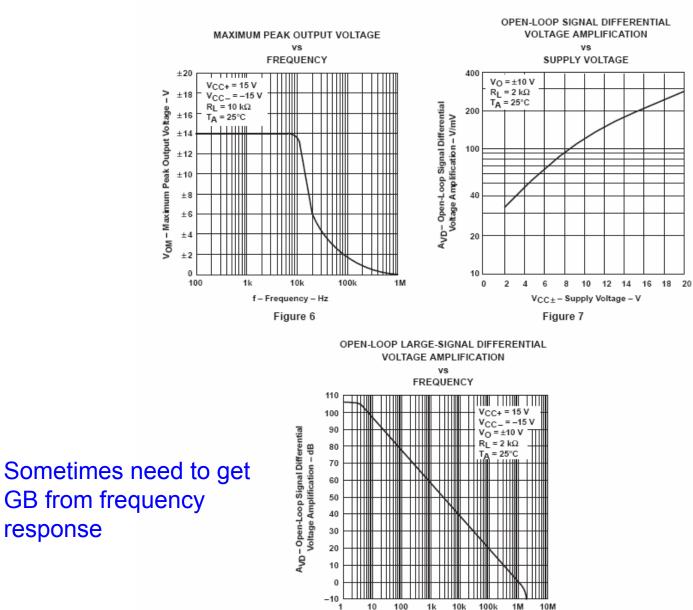
The μ A741C is characterized for operation from 0°C to 70°C. The μ A741I is characterized for operation from -40°C to 85°C.The μ A741M is characterized for operation over the full military temperature range of -55°C to 125°C.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

Copyright @ 2000, Texas Instruments Incorporated

POST OFFICE BOX 655303 @ DALLAS, TEXAS 75265

	PARAMETER	TEST	- t	ŀ	.A741C		μA74	1I, µA7	41M	UNIT
	PARAMETER	CONDITIONS	τ _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vio	Input offset voltage	Vo = 0	25°C		1	6		1	5	mV
VIO	Input onset voltage	v0 - u	Full range			7.5			6	mv
∆V _{IO(adj)}	Offset voltage adjust range	V _O = 0	25°C		±15			±15		mV
	IO Input offset current	Vo = 0	25°C		20	200		20	200	пА
10	input onset current	v0 - u	Full range			300			500	na.
IIB	Input bias current	V _O = 0	25°C		80	500		80	500	nA
IB	input bias current	v0-u	Full range			800			1500	10
V	Common-mode input		25°C	±12	±13		±12	±13		v
VICR	voltage range		Full range	±12			±12			
		R _L = 10 kΩ	25°C	±12	±14		±12	±14		v
	Maximum peak output	$R_L \ge 10 \ k\Omega$	Full range	±12			±12			
VOM	voltage swing	RL = 2 kΩ	25°C	±10	±13		±10	±13		
		R _L ≥ 2 kΩ	Full range	±10			±10			
	Large-signal differential	R _L ≥2 kΩ	25°C	20	200		50	200		V/mV
AVD	voltage amplification	V _O = ±10 V	Full range	15			25			v/mv
rj	Input resistance		25°C	0.3	2		0.3	2		MΩ
ro	Output resistance	V _O = 0, See Note 5	25°C		75			75		Ω
ci	Input capacitance		25°C		1.4			1.4		pF
CMRR	Common-mode rejection	V = V =====	25°C	70	90		70	90		dB
CMRR	ratio	VIC = VICRmin	Full range	70			70			dB
L.	Supply voltage sensitivity	V = 10 V = 145 V	25°C		30	150		30	150	μV/V
k svs	$(\Delta V_{IO}/\Delta V_{CC})$	V_{CC} = ±9 V to ±15 V	Full range			150			150	μν/ν
los	Short-circuit output current		25°C		±25	±40		±25	±40	mA
1	Surah averat	Veel Nelset	25°C		1.7	2.8		1.7	2.8	
ICC	Supply current	pply current V _O = 0, No load Full range			3.3			3.3	3 mA	
P	Total power dissipatio-	V = = 0 No log -	25°C		50	85		50	85	mW
PD	Total power dissipation	V _O = 0, No load	Full range			100			100	mvv


[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for the μA741C is 0°C to 70°C, the μA741I is -40°C to 85°C, and the μA741M is -55°C to 125°C.

NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

PARAMETER		TEST CONDITIONS		μA741C			μA741I, μA741M			UNIT	
	PARAMETER	TEST CONDITIONS		MIN TYP MAX MIN TYP MAX		MIN TYP MAX MIN TYP		MAX	UNIT		
tr	Rise time	V ₁ = 20 mV,	RL = 2 kΩ,		0.3			0.3		μs	
	Overshoot factor	C _L = 100 pF,	See Figure 1		5%			5%			
SR	Slew rate at unity gain	VI = 10 V, CL = 100 pF,	R _L = 2 kΩ, See Figure 1		0.5			0.5		V/µs	

operating characteristics, $V_{CC\pm}$ = ±15 V, T_A = 25°C

response

f - Frequency - Hz

1

December 18, 2008

LMP2231 Single Micropower, 1.6V, Precision Operational Amplifier with CMOS Inputs

General Description

The LMP2231 is a single micropower precision amplifier designed for battery powered applications. The 1.6V to 5.5V operating supply voltage range and quiescent power consumption of only 16 μ W extend the battery life in portable battery operated systems. The LMP2231 is part of the LMP® precision amplifier family. The high impedance CMOS input makes it ideal for instrumentation and other sensor interface applications.

The LMP2231 has a maximum offset of 150 μ V and maximum offset voltage drift of only 0.4 μ V/°C along with low bias current of only ±20 fA. These precise specifications make the LMP2231 a great choice for maintaining system accuracy and long term stability.

The LMP2231 has a rail-to-rail output that swings 15 mV from the supply voltage, which increases system dynamic range.

Features

(For $V_S = 5V$, Typical unless otherwise noted)

 Supply current 	10 µA
 Operating voltage range 	1.6V to 5.5V
■ Low TCV _{os}	±0.4 μV/°C (max)
■ V _{os}	±150 μV (max)
 Input bias current 	20 fA
■ PSRR	120 dB
■ CMRR	97 dB
 Open loop gain 	120 dB
 Gain bandwidth product 	130 kHz
 Slew rate 	58 V/ms
Input voltage noise, f = 1 kHz	60 nV/√Hz
 Temperature range 	–40°C to 125°C

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

2000V
100V
±300 mV
6V
/+ + 0.3V, V [_] − 0.3V
–65°C to 150°C

Junction Temperature (Note 3)	150°C
Mounting Temperature	
Infrared or Convection (20 sec.)	+235°C

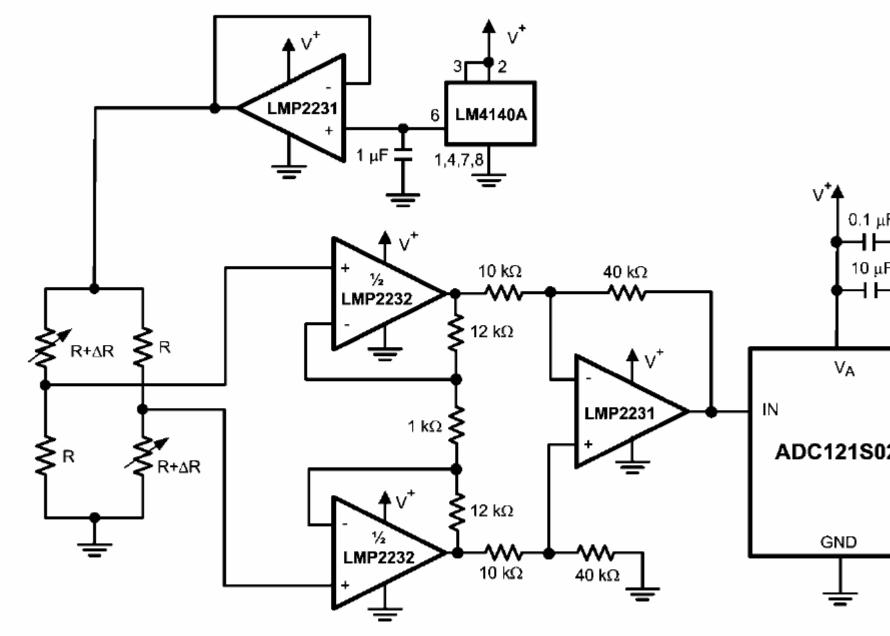
Operating Ratings (Note 1)

Operating Temperature Range (Note 3)	–40°C to 125°C
Supply Voltage (V _S = V+ - V-)	1.6V to 5.5V
Package Thermal Resistance (θ_{JA}) (Note 3)	
5-Pin SOT23	160.6 °C/W
8-Pin SOIC	116.2 °C/W

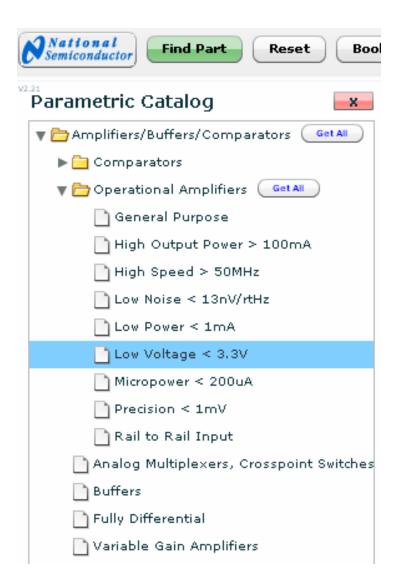
5V DC Electrical Characteristics (Note 4) Unless otherwise specified, all limits guaranteed for $T_A = 25^{\circ}$ C, V⁺ = 5V, V⁻ = 0V, V_{CM} = V_O = V⁺/2, and R_L > 1 M Ω . Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{os}	Input Offset Voltage			±10	±150 ±230	μV
TCVos	Input Offset Voltage Drift	LMP2231A		±0.3	±0.4	
		LMP2231B		±0.3	±2.5	µV/ºC
I _{BIAS}	Input Bias Current			0.02	±1 ±50	pА
l _{os}	Input Offset Current			5		fA
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 4V$	81 80	97		dB
PSRR	Power Supply Rejection Ratio	$1.6V \le V^+ \le 5.5V$ V ⁻ = 0V, V _{CM} = 0V	83 83	120		dB
CMVR	Common Mode Voltage Range	CMRR ≥ 80 dB CMRR ≥ 79 dB	-0.2 - 0.2		4.2 4.2	v
A _{VOL}	Large Signal Voltage Gain	$V_0 = 0.3V$ to 4.7V $R_L = 10 \text{ k}\Omega$ to V+/2	110 108	120		dB
Vo	Output Swing High	$R_L = 10 k\Omega$ to V+/2 V _{IN} (diff) = 100 mV		17	50 50	mV
	Output Swing Low	$R_L = 10 \text{ k}\Omega \text{ to V+/2}$ $V_{IN}(diff) = -100 \text{ mV}$	17	50 50	from eith rail	
I _o	Output Current (Note 7)	Sourcing, V _O to V– V _{IN} (diff) = 100 mV	27 19	30		
		Sinking, V _O to V+ V _{IN} (diff) = -100 mV	17 12	22		mA
I _S	Supply Current			10	16 18	μA

5V AC Electrical Characteristics (Note 4) Unless otherwise specified, all limits guaranteed for $T_A = 25^{\circ}C$, V⁺ = 5V, V⁻ = 0V, $V_{CM} = V_O = V^{+/2}$, and $R_L > 1 M\Omega$. Boldface limits apply at the temperature extremes.


Symbol	Parameter	Conditions		Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
GBW	Gain-Bandwidth Product	$C_{L} = 20 \text{ pF}, R_{L} = 10$		130		kHz	
SR	Slew Rate	A _V = +1	Falling Edge	33 32	58) //maa
			Rising Edge	33 32	48		V/ms
θ _m	Phase Margin	C _L = 20 pF, R _L = 10	kΩ		78		deg
G _m	Gain Margin	C _L = 20 pF, R _L = 10	kΩ		27		dB
e _n	Input-Referred Voltage Noise Density	f = 1 kHz			60		nV/√Hz
	Input-Referred Voltage Noise	0.1 Hz to 10 Hz			2.3		μV _{PP}
i _n	Input-Referred Current Noise	f = 1 kHz			10		fA/√Hz
THD+N	Total Harmonic Distortion + Noise	$f = 100 \text{ Hz}, \text{ R}_{L} = 10$	kΩ		0.002		%

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{OS}	Input Offset Voltage			±10	±230 ±325	μV
TCV _{os}	Input Offset Voltage Drift	LMP2231A		±0.3	±0.4	µV/°C
		LMP2231B		±0.3	±2.5	μν/Ο
I _{BIAS}	Input Bias Current			0.02	±1.0 ±50	рА
l _{os}	Input Offset Current			5		fA
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 0.8V$	76 75	92		dB
PSRR	Power Supply Rejection Ratio	$1.6V \le V^+ \le 5.5V$ V ⁻ = 0V, V _{CM} = 0V	83 83	120		dB
CMVR	Common Mode Voltage Rang	CMRR ≥ 76 dB CMRR ≥ 75 dB	-0.2 0		1.0 1.0	v
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 0.3V$ to 1.5V $R_{L} = 10 \text{ k}\Omega$ to V+/2	103 103	120		dB
Vo	Output Swing High	$R_L = 10 k\Omega$ to V+/2 V _{IN} (diff) = 100 mV		12	50 50	mV
	Output Swing Low	$R_L = 10 k\Omega$ to V+/2 V _{IN} (diff) = -100 mV		13	50 50	from either rail
I _o	Output Current (Note 7)	Sourcing, V _o to V- V _{IN} (diff) = 100 mV	2.5 2	5		m 4
		Sinking, V _O to V+ V _{IN} (diff) = -100 mV	2 1.5	5		mA
I _S	Supply Current			10	14 15	μΑ


LMP2231 Single

Symbol	Parameter	Conditi	ons	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
GBW	Gain-Bandwidth Product	C _L = 20 pF, R _L = 10	kΩ		127		kHz
SR	Slew Rate	$A_V = +1, C_L = 20 \text{ pF}$	Falling Edge		58		
		$R_L = 10 \ k\Omega$	Rising Edge		48		V/ms
θ _m	Phase Margin	C _L = 20 pF, R _L = 10	kΩ		70		deg
G _m	Gain Margin	C _L = 20 pF, R _L = 10	kΩ		25		dB
e _n	Input-Referred Voltage Noise Density	f = 1 kHz			60		nV/√Hz
	Input-Referred Voltage Noise	0.1 Hz to 10 Hz			2.4		μV _{PP}
i _n	Input-Referred Current Noise	f = 1 kHz			10		fA/√Hz
THD+N	Total Harmonic Distortion + Noise	f = 100 Hz, R ₁ = 10	kΩ		0.005		%

ar Application

Strain Gauge Bridge Amplifier

Low Voltage < 3.3V (111/111)

Supply Current Per Channel (mA)	PowerWise Rating 2 (uA/MHz)	Slew Rate (Volts/usec)	Offset Voltage max, 250 (mV)	Max Input Bias Current (nA)	Input OutputType	Price(1K US\$)*	Packaging
9.6 📢 <= 9.6	5400 📢 <= 5400	940 📢 <= 940	10 <= 10	30000 📢 <= 30000	🗹 Not Rail to Rail	55 📢 <= 55	CERDIP
>= 0.000	>= 1.8	>= 0.004	Go	Go	🗹 R-R In and Out	>= 0.246	V DIE
Go	Go	Go			Vcm to V-, No	Go	LLP
0.00095	1.8 🖉	0.0041	0.005	0.00002	✓ Vcm to V-, R	0.246	MDIP
	9.6 <= 9.6	9.6 < = 9.6 >= 0.000 5400 >= 1.8 60	9.6 <= 9.6	9.6 $< = 9.6$ >= 0.000 $< = 5400$ $< = 5400$ $> = 1.8$ 940 $< = 940$ $= 10$ $= 10$ $= 0.004$ $= 0.004$	9.6 $< < = 9.6$ >= 0.000 $> = 1.8$ 940 $< < = 940$ $> = 0.004$ $=$	9.6 \checkmark <= 9.6 >= 0.000 \checkmark = 1.8 \checkmark = 0.004 \checkmark = 0.004 \circlearrowright =	9.6 \checkmark <= 9.6 >= 0.000 \checkmark = 1.8 \bigcirc = 0.004 \bigcirc =

Part	Supply Min (Volt)	Supply Max (Volt)	Gain Bandwidth (MHz)	Channels (Channels)	Supply Current Per Channel (mA)	PowerWise Rating 2 (uA/MHz)	Slew Rate (Volts/usec)	Offset Voltage max, 250 (mV)	Max Input Bias Current 🔺 (nA)	Input OutputType	Price(1K US\$)*	Packaging
LMP7721	1.8	5.5	17	1	1.3	76.5	10.5	0.15	0.00002	Vcm to V-, Not R	4.9500	SOIC NARROW
LMP2231	1.6	5.5	0.13	1	0.016	123	0.042	0.15	0.001	Vcm to V-, R-R (1,4000 0,9500	SOIC NARROW SOT
LMP2016	2.7	5	3	2	0.93	310	4	0.005	0.003	Vcm to V-, R-R (1.5000	MINI SOIC SOIC NA
LMP2015	2.7	5	3	1	0.93	310	4	0.005	0.003	Vcm to V-, R-R (1.1000	SOIC NARROW SOT
LMC6442	1.8	11	0.01	2	0.00095	95	0.0041	3 7	0.004	Vcm to V-, R-R (1.0200	MDIP SOIC NARRON
LMV2011	2.7	5	3	1	0.93	310	4	0.025	0.005	Vcm to V-, R-R (0.9500	SOIC NARROW SOT
LMP2011	2.7	5	3	1	0.93	310	4	0.025	0.005	Vcm to V-, R-R (1.0500	SOIC NARROW SOT
LMP2014MT	2.7	5	3	4	0.93	310	4	0.025	0.005	Vcm to V-, R-R (2.1000	TSSOP
LMP2012	2.7	5	3	2	0.93	310	4	0.025	0.005	Vcm to V-, R-R (1.3500	MINI SOIC SOIC NA
LPV531	2.7	5	4.6	1	0.425	92.4	2.5	4.5	0.01	Vcm to V-, R-R (0.4500	тѕот
LMV832	2.7	5.5	3.3	2	0.24	72	2	1	0.01	Vcm to V-, R-R (0.7900	MINI SOIC
LMV831	2.7	5.5	3.3	1	0.25	72	2	1	0.01	Vcm to V-, R-R (0.5500	SC-70
LMC6572	2.7	10	0.22	2	0.038	172.7	0.09	3 7	0.01	Vcm to V-, R-R (0.5910 0.7780	SOIC NARROW
LMC6574	2.7	10	0.22	4	0.038	172.7	0.09	3 7	0.01	Vcm to V-, R-R (1.9400 1.2000	SOIC NARROW
LMC7111	2.7	11	0.05	1	0.025	500	0.027	7	0.02	R-R In and Out	0.4450	SOT-23
LMV791	1.8	5	17	1	1.15	67.6	9.5	1.35	0.025	Vcm to V-, R-R (0.5000	тѕот
LMV301	1.8	5	1	1	0.163	163	0.66	8	0.05	Vcm to V-, R-R (0.2900	SC-70
LMP7701	2.7	12	2.5	1	0.715	286	1	0.2	0.05	R-R In and Out	1.0500	SOT-23
LMP7709	2.7	12	14	4	0.75	53.6	5.6	0.15	0.05	R-R In and Out	2,4500	TSSOP
LMP7707	2.7	12	14	1	0.75	53.6	5.6	0.15	0.05	R-R In and Out	1.1500	SOT-23
LMC8101	2.7	10	1	1	0.7	700	1	5	0.064	R-R In and Out	0.4560	MINI SOIC MICRO
LMC7101	2.7	15.5	1.1	1	0.5	454.5	1.1	3 7	0.064	R-R In and Out	0.3900 0.3290	SOT-23

Part	Supply Min (Volt)	Supply Max (Volt)	Gain Bandwidth (MHz)	Channels (Channels)	Supply Current Per Channel (mA)	PowerWise Rating 2 (uA/MHz)	Slew Rate (Volts/usec)	Offset Voltage max, 25℃ (mV)	Max Input Bias Current ▲ (nA)	Input OutputType	Price(1K US\$)*	Packaging
LMH6601	2.4	5.5	125	1	9.6	38.4	275	2.4	0.1	Vcm to V-, R-R (0.8500 0.6500	SC-70
LMP7715	1.8	5.5	17	1	1.15	67.6	9.5	0.15	0.1	Vcm to V-, R-R (0.8000	SOT-23
LMV751	2.7	5.5	5	1	0.6	120	2.3	1	0.1	Vcm to V-, R-R (0.7900	SOT-23
LMV797	1.8	5	17	2	1.3	76.5	9.5	1.35	0.1	Vcm to V-, R-R (0.6300	MINI SOIC
LMV796	1.8	5	17	1	1.15		9.5	1.35	0.1	Vcm to V-, R-R (0.4500	SOT-23
LMV794	1.8	5	88	2	1.3	13.1	28	1.35	0.1	Vcm to V-, R-R (0.9000	MINI SOIC SOIC NA
LMV793	1.8	5	88	1	1.15	13.1	28	1.35	0.1	Vcm to V-, R-R (0.6500	SOIC NARROW SOT
LMV792	1.8	5	17	2	1.3	76.5	9.5	1.35	0.1	Vcm to V-, R-R (0.6700	MINI SOIC
LM¥774	2.7	5	3.5	4	0.6	171.4	1.4	1	0.1	Vcm to V-, R-R (0.9000	TSSOP
LMV772	2.7	5	3.5	2	0.6	171.4	1.4	1	0.1	Vcm to V-, R-R (0.7100	MINI SOIC SOIC NA
LMV771	2.7	5	3.5	1	0.6	171.4	1.4	0.85	0.1	Vcm to V-, R-R (0.5100	SC-70
LMP7711	1.8	5.5	17	1	1.15	67.6	9.5	0.15	0.1	Vcm to V-, R-R (0.8000	тзот
LMP7718	1.8	5.5	88	2	1.3	14.8	28	0.15	0.1	Vcm to V-, R-R (1.2500	MINI SOIC SOIC NA
LMV710	2.7	5	5	1	1.17	234	5	3	0.1	R-R In and Out	0.4490	SOT-23
LMP7712	1.8	5.5	17	2	1.3	76.5	9.5	0.15	0.1	Vcm to V-, R-R (1.2500	MINI SOIC
LMP7717	1.8	5.5	88	1	1.15	13	28	0.15	0.1	Vcm to V-, R-R (0.8500	SOIC NARROW SOT
LMP7716	1.8	5.5	17	2	1.3	76.5	9.5	0.15	0.1	Vcm to V-, R-R (1.1500 1.4500	MINI SOIC
LMV712	2.7	5.5	5	2	1.17	234	5	3	0.13	R-R In and Out	0.6200 0.7500 0	LLP MINI SOIC MIC
LMV716	2.7	5	5	2	1.6	320	5.8	5	0.13	Vcm to V-, R-R (0.4500	MINI SOIC
LMC6494	2.5	15.5	1.5	4	0.5	333.3	1.3	3 6	0.2	R-R In and Out	1.8600 2.8600	SOIC NARROW
LMC6492	2.5	15.5	1.5	2	0.5	333.3	1.3	3 6	0.2	R-R In and Out	1.0000 1.2500	SOIC NARROW
LMV842	2.7	12	4.5	2	1.02	226.7	2.5	0.5	0.3	R-R In and Out	1.1500	MINI SOIC
LMV841	2.7	12	4.5	1	1.02	226.7	2.5	0.5	0.3	R-R In and Out	0.7000	SC-70
LMV844	2.7	12	4.5	4	1.02	226.7	2.5	0.5	0.3	R-R In and Out	1.9000	TSSOP SOIC NARR(

Part	Supply Min (Volt)	Supply Max (Volt)	Gain Bandwidth (MHz)	Channels (Channels)	Supply Current Per Channel (mA)	PowerWise Rating 2 (uA/MHz)	Slew Rate (Volts/usec)	Offset Voltage max, 25€ (mV)	Max Input Bias Current 🔺 (nA)	Input OutputType	Price(1K US\$)*	Packaging
LMV344	2.7	5.5	1	4	0.107	107	1	5	0.375	Vem to V-, R-R (0.4880 0.4400	TSSOP SOIC NARRO
LMV341	2.7	5.5	1	1	0.107	107	1	4	0.375	Vcm to V-, R-R (0.3130	SC-70
LMV342	2.7	5.5	1	2	0.107	107	1	5	0.375	Vcm to V-, R-R (0.4090 0.3930	MINI SOIC SOIC NAI
LMP7702	2.7	12	2.5	2	0.75	300	1	0.22	0.4	R-R In and Out	1.4000	MINI SOIC
LMP7704	2.7	12	2.5	4	0.725	290	1	0.22	0.4	R-R In and Out	1.9000	TSSOP
LMV854	2.7	5.5	8	4	0.41	51.3	4.5	1	0.5	Vcm to V-, R-R (1.2000	TSSOP
LMV852	2.7	5.5	8	2	0.41	51.3	4.5	1	0.5	Vcm to V-, R-R (0.9000	MINI SOIC
LMV862	2.7	5.5	30	2	2.25	75	18	1	0.5	Vcm to V-, R-R (0.9500	MINI SOIC
LMV861	2.7	5.5	30	1	2.25	75	18	1	0.5	Vcm to V-, R-R (0.6700	SC-70
LMV851	2.7	5.5	8	1	0.41	51.3	4.5	1	0.5	Vcm to V-, R-R (0.6300	SC-70
LPV511	2.7	12	0.027	1	0.00097	18.7	0.0077	з	1,9	R-R In and Out	0.4500	SC-70
LM4250	2	36	0.25	1	0.01	40	0.2	6	20	Not Rail to Rail	0.4380 0.4660	MDIP SOIC NARROW
LP324	3	32	0.1	4	0.02125	212.5	0.05	9	20	Vcm to V-, Not R	0.3790 0.4850	MDIP TSSOP SOIC N
LM10	1.1	7 45	0.09 0.05	1	0.28 0.27 0.3	3111.1 5400 33	0.2	2 4	30 40	Vcm to V-, R-R (1.3200 55.0000	TO-5 MDIP SOIC W:
LMV551	2.7	5.5	3	1	0.037	12.3	1	з	38	Vcm to V-, R-R (0.4500	SC-70 SOT-23
LMV554	2.7	5.0	3	4	0.037	12.3	1	з	38	Vcm to V-, R-R (0.7900	TSSOP
LMV552	2.7	5.5	3	2	0.037	12.3	1	3	38	Vcm to V-, R-R (0.5900	MINI SOIC
LP2902	3	26	0.1	4	0.02125	212.5	0.05	10	40	Vcm to V-, Not R	0.5380 0.5690	MDIP SOIC NARROW
LMV934	1.8	5.5	1.5	4	0.116	77.3	0.42	5.5	50	R-R In and Out	0.6490 0.6310	TSSOP SOIC NARRO
LMV931	1.8	5.5	1.5	1	0.116	77.3	0.42	4	50	R-R In and Out	0.4200	SC-70 SOT-23
LMV982	1.8	5	1.5	2	0.116	77.3	0.42	5.5	50	R-R In and Out	0.5890	MINI SOIC
LMV932	1.8	5.5	1.5	2	0.116	77.3	0.42	5.5	50	R-R In and Out	0.5200	MINI SOIC SOIC NAI
LM432	2.5	16	1	2	0.075	75	0.5	4	50	Vcm to V-, Not R	0.4700	SOIC NARROW
LMV981	1.8	5	1.5	1	0.116	77.3	0.42	4	50	R-R In and Out	0.5800 0.3900	SC-70 SOT-23 MICF

Part	Supply Min (Volt)	Supply Max (Volt)	Gain Bandwidth (MHz)	Channels (Channels)	Supply Current Per Channel (mA)	PowerWise Rating 2 (uA/MHz)	Slew Rate (Volts/usec)	Offset Voltage max, 250 (mV)	Max Input Bias Current 🔺 (nA)	Input OutputType	Price(1K US\$)*	Packaging
LPV321	2.7	5	0.152	1	0.009	59.2	0.1	7	60	Vcm to V-, R-R (0.3100	SC-70 SOT-23
LPV358	2.7	5	0.152	2	0.007	46.1	0.1	7	60	Vcm to V-, R-R (0.3960	MINI SOIC SOIC NA
LPV324	2.7	5	0.152	4	0.0075	49.3	0.1	7	60	Vcm to V-, R-R (0.4860	TSSOP SOIC NARRO
LMV951	0.9	з	2.8	1	0.37	132.1	1.4	2.8	85	R-R In and Out	0.5200	тѕот
LMV651	2.7	5.5	12	1	0.11	9.2	2.8	1.5	100	Vcm to V-, R-R (0.4500	SC-70
LMV652	2.7	5.5	12	2	0.11	9.2	2.8	1.5	100	Vcm to V-, R-R (0.5900	MINI SOIC
LMV641	2.7	12	10	1	0.158	15.8	1.6	0.5	105	Vcm to V-, R-R (0.6200	SOIC NARROW SC-
LMV821	2.5	5.5	5.6	1	0.3	53.6	2	3.5	150	Vcm to V-, R-R (0.4100	SC-70 SOT-23
LMV824	2.5	5.5	5.6	4	0.25	38.5	2	3.5	150	Vcm to V-, R-R (0.5800	TSSOP SOIC NARR
LMV822	2.5	5.5	5.6	2	0.25	44.6	2	3.5	150	Vcm to V-, R-R (0.5000	MINI SOIC SOIC NA
LM7301	2.2	30	4	1	0.6	150	1.25	6	250	R-R In and Out	0.8480	SOIC NARROW SOT
LMV654	2.7	5.5	12	4	0.119	9.2	3.2	1.8	300	Vcm to V-, R-R (0.9500	TSSOP
LM6132	2.7	24	10	2	0.36	36	14	2 6	350 300	R-R In and Out	1.6000 1.2500	MDIP SOIC NARRO
LM6134	2.7	24	10	4	0.36	36	14	2 6	350 300	R-R In and Out	1.8300 1.7100 :	MDIP SOIC NARRO
LMV721	2.2	5.5	10	1	1.03	103	5.25	3	400	Vcm to V-, R-R (0.4820	SC-70 SOT-23
LMV722	2.2	5.5	10	2	0.9	90	5.25	3	400	Vcm to V-, R-R (0.6100	MINI SOIC SOIC N
LMV358	2.7	5.5	1	2	0.105	105	1	7	500	Vcm to V-, R-R (0.3000	MINI SOIC SOIC NA
LMV321	2.7	5.5	1	1	0.13	130	1	7	500	Vcm to V-, R-R (0.2460 0.2570	SC-70 SOT-23
LMV324	2.7	5.5	1	4	0.1025	102.5	1	7	500	Vcm to V-, R-R (0.4330 0.3520	TSSOP SOIC NARR
LM6144	1.8	24	17	4	0.65	38.2	25	2.5 1	526	R-R In and Out	2.9400 3.8300	MDIP SOIC NARRO
LM6142	1.8	24	17	2	0.65	38.2	25	2.5 1	526	R-R In and Out	2.2100 12.6000	MDIP CERDIP SOI
LM6154	2.7	24	75	4	1.4	1.8	30	5	1500	R-R In and Out	2.8600	SOIC NARROW
LM6152	2.7	24	75	2	1.4	1.8	30	5 2	1500	R-R In and Out	1.4900 1.8500	SOIC NARROW
LMV116	2.7	12	45	1	0.6	13.3	40	5	2200	Vcm to V-, R-R (0.5600	SOT-23
LMV118	2.7	12	45	1	0.6	13.3	40	5	2200	Vcm to V-, R-R (0.5800	SOT-23
LM8261	2.5	30	21	1	0.97	46.2	12	5	2700	R-R In and Out	0,9540	SOT-23
LM8272	2.5	24	13	2	0.9	69.2	12	5	2700	R-R In and Out	1.3000	MINI SOIC
LM8262	2.5	22	21	2	1.05	50	12	7	2700	R-R In and Out	1.0500	MINI SOIC
LMH6644	2.7	12.8	130	4	2.7	20.8	135	5	3250	Vcm to V-, R-R (1.3000	TSSOP SOIC NARR
LMH6639	3	12	190	1	3.6	15.8	172	5	3250	Vcm to V-, R-R (0.7000	SOIC NARROW SO
LMH6643	2.7	12.8	130	2	2.7	20.8	135	5	3250	Vcm to V-, R-R (0.7900	MINI SOIC SOIC N
LMH6642	2.7	12.8	130	1	2.7	20.8	135	5	3250	Vcm to V-, R-R (0.6600	SOIC NARROW SO
LMH6647	2.5	12	55	1	0.725	13.2	22	з	4000	R-R In and Out	0.7100	SOIC NARROW SO
LMH6646	2.5	12	55	2	0.725	13.2	22	з	4000	R-R In and Out	1.0500	MINI SOIC SOIC N
LMH6645	2.5	12	55	1	0.725	13.2	22	з	4000	R-R In and Out	0.7100	SOIC NARROW SO
LMH6682	3	12	190	2	6.5	18.1	940	5	30000	Vcm to V-, Not R	0.8900	MINI SOIC SOIC N
LMH6658	3	12	270	2	6	22.2	700	5	30000	Vcm to V-, Not R	0.9500	MINI SOIC SOIC N
LMH6657	3	12	270	1	6	22.2	700	5	30000	Vcm to V-, Not R	0.7500	SC-70 SOT-23
LMH6683	3	12	190	3	6.5	18.1	940	5	30000	Vem to V-, Not R	1.2400	TSSOP SOIC NARR

Search Panel (MHz) Supply Max (Volt) Supply Min (Volt)
 Supply Current Per Channel (mA)
 PowerWise Rating 2 (uA/MHz)
 Slew Rate (Volts/usec)
 Input OutputType
 Max Input Bias Current (nA) Price(1K US\$)* Packaging 2 20 📢 <= 20 16666.7 🥋 <= 16666 84 70 📢 <= 70 3600 🥋 <= 3600 14000 🥥 <= 14000 78.7 🎣 <= 78.7 >= 5 🖌 Not Rail to Rail CERDIP 🗹 R-R In and Out 🖌 CERPAC Go Go >= 14.4 >= 2 G0) >= 0.449 >= 0.78 🗹 Vcm to V-, No... 🗸 DIE • Go Go (Go) Go 5 👌 🗹 ISOLATE 2.4 0.78 👆 14.4 👆 2 Vcm to V-, R-... 0.1 0.449 👌 4

Part	Output Current (mA) 🔻	Offset Voltage max, 250 (mV)	Gain Bandwidth (MHz)	Supply Max (Volt)	Supply Min (Volt)	Supply Current Per Channel (mA)	PowerWise Rating 2 (uA/MHz)	Slew Rate (Volts/usec)	Input OutputType	Max Input Bias Current (nA)	Price(1K US\$)*	Packaging
LM7372	150	8	120	36	9	6.5	14.8	3000	Not Rail to Rail	12000	1.9800	PSOP SOIC NARROV
LM1877	1000	15	5	26	6	12.5	2500	2	Not Rail to Rail	50	0.6150	SOIC WIDE
LM3875	6000	10	8	84	20	30	3750	11	Not Rail to Rail	1000	3,4300	ISOLATED TO220
LM3886	11500	10	3	84	18	50	16666.7	19	Not Rail to Rail	1000	3,4300	TO-220 ISOLATED T
LM4765	3500	15	7.5	64	18	25	3333.3	18	Not Rail to Rail	500	3.5000	TO-220
LM6171	135	3 6	100	34	5.5	2.5	15.6	3600	Not Rail to Rail	4000	1.4500 1.1900	MDIP SOIC NARROV
LM6172	85	1.5 3	100	36	5.5	2.3	14.4	3000	Not Rail to Rail	4000	78.7000 1.7000	MDIP CERDIP SOIC
LM6181	130	5	100	32	7	7.5	62.5	1400	Not Rail to Rail	5000	1.2400	MDIP SOIC NARROV
LM6584	75	4	15.4	13	5	0.78	50.6	15	R-R In and Out	7000	1.2400	TSSOP SOIC NARRO
LM6588	230	4	15.4	16	5	0.8	51.9	15	R-R In and Out	7000	1.1500	TSSOP SOIC NARRO
LM675	4000	10	5.5	60	10	18	3272.7	8	Not Rail to Rail	2000	2.7500	TO-220
LM7332	100	4	20	32	2.5	1.2	60	13.2	R-R In and Out	1000	1.3000	MINI SOIC SOIC NA
LM1875	4000	15	5.5	60	16	70	12727.3	8	Not Rail to Rail	2000	1.6600	TO-220
LM8261	53	5	21	30	2.5	0.97	46.2	12	R-R In and Out	2700	0.9540	SOT-23
LM8262	60	7	21	22	2.5	1.05	50	12	R-R In and Out	2700	1.0500	MINI SOIC
LM8272	100	5	13	24	2.5	0.9	69.2	12	R-R In and Out	2700	1.3000	MINI SOIC
LMH6601	150	2.4	125	5.5	2.4	9.6	38.4	275	Vem to V-, R-R (0.1	0.8500 0.6500	SC-70
LMH6639	160	5	190	12	3	3.6	15.8	172	Vcm to V-, R-R (3250	0.7000	SOIC NARROW SOT
LMH6640	110	1	62	16	4.5	4	21.1	170	Vem to V-, R-R (3500	1.1500	SOT-23
LMH6642	115	5	130	12.8	2.7	2.7	20.8	135	Vcm to V-, R-R (3250	0.6600	SOIC NARROW SOT
LMH6643	115	5	130	12.8	2.7	2.7	20.8	135	Vcm to V-, R-R (3250	0.7900	MINI SOIC SOIC NA
LMH6644	115	5	130	12.8	2.7	2.7	20.8	135	Vcm to V-, R-R (3250	1.3000	TSSOP SOIC NARRO
LMH6672	200	5,5	130	12	5	6.2	34.4	170	Vcm to V-, Not R	14000	1.6000	PSOP SOIC NARRO
LMV710	40	з	5	5	2.7	1.17	234	5	R-R In and Out	0.1	0.4490	SOT-23
LMV712	32	з	2	5,5	2,7	1,17	234	2	R-R In and Out	0.13	0.6200 0.7500 (L	ть міні soic місі

High Output Power > 100mA (25/25)

General Purpose (55/55)

Search Panel								
w Rate (Volts/usec)	Supply Min (Volt)	Supply Max (Volt)	Offset Voltage max, 250 (mV)	Supply Current Per Channel (mA)	PowerWise Rating 2 (uA/MHz)	Max Input Bias Current (nA)	Price(1K US\$)*	Packaging
0 <= 70 >= 0.05 €	12 <= 12 60 1.1	45 5.5 5.5	15 <= 15 60 0.4	18.5 <= 18.5 >= 0.01 Go	5400 <= 5400 >= 29.2 Go	30000 < <= 30000	55 < 55 >= 0.212 0.212 Go	CERDIP CERPACK DIE LCC
•								L L

Part	Gain Bandwidth T (MHz)	Channels (Channels)	Input OutputType	Slew Rate (Volts/usec)	Supply Min (Volt)	Supply Max (Volt)	Offset Voltage max, 250 (mV)	Supply Current Per Channel (mA)	PowerWise Rating 2 (uA/MHz)	Max Input Bias Current (nA)	Price(1K US\$)*	Packaging
LM348	1	4	Not Rail to Rail	0.5	10	36	6	0.6	600	400	0.4320	MDIP SOIC NARROW
LF 156	5	1	Vcm to V+, Not F	12	10	44	5	5	1000	50	4.0300 14.4000	то-99
LF256	5	1	Vcm to V+, Not F	12	10	44	5	5	1000	5	4.0300	TO-99
LF347	4	4	Vcm to V+, Not F	13	8	36	10 5	1.8	450	8	0.9220 0.8320 0	MDIP SOIC NARROW
LF353	4	2	Vcm to V+, Not F	13	10	36	10	1.8	450	8	0.3860 0.4100	MDIP SOIC NARROW
LF356	5	1	Vcm to V+, Not F	12	10	36	10	5	1000	8	0.3490 0.3630 4	MDIP SOIC NARROW
LF411	4	1	Not Rail to Rail	15	10	44 36	0.4 5 1	1.8	450	3 4	2.8500 29.9000	MDIP CERDIP CERP/
LF412	4	2	Not Rail to Rail	15	10	36 45	3 1	1.8	450	50	14.7000 5.4000	TO-5 MDIP CERDIP
LM10	0.09 0.05	1	Vcm to V-, R-R (0.2	1.1	7 45	2 4	0.28 0.27 0.3	3111.1 5400 33	30 40	1.3200 55.0000	TO-5 MDIP SOIC W:
LM101A	1	1	Vcm to V+, Not F	0.5	10	44	2	1.8	1800	100	4.4000 13.7000	CERDIP CERPACK T(
LM118	15	1	Not Rail to Rail	70	10	40	4	4.5	300	500	27.1000 5.1500	CERDIP WAFER TO-
LM124	1	4	Vcm to V-, Not R	0.5	з	32	5 2	0.18	180	100 300	19.5000 4.0000	CERDIP CERPACK LC
LM13700	2	2	Not Rail to Rail	50	10	36	4	1.3	650	7000	0.4390 0.8690	MDIP SOIC NARROV
LM1458	1	2	Not Rail to Rail	0.5	6	36	6	1.5	1500	800	0.3790 0.3330	MDIP SOIC NARROV
LM148	0.9	4	Not Rail to Rail	0.5	10	44	5	0.6	666.7	325	4.6000 6.3100	CERDIP WAFER DIE
LM1558	1	2	Not Rail to Rail	0.5	6	44	5	1.5	1500	1500	11.9000 4.0100	CERDIP TO-99
LM158	1	2	Vcm to V-, Not R	0.5	з	32	5 2	0.25	250	100 300	17.7000 4.4000	CERDIP CERPACK W
LM201A	1	1	Vcm to V+, Not F	0.5	10	44	2	1.8	1800	100	3,9300	то-99
LM224	1	4	Vcm to V-, Not R	0.5	з	32	5	0.18	180	300	4.0000	CERDIP
LM258	1	2	Vcm to V-, Not R	0.5	з	32	5	0.25	250	300	3.6000	TO-99
LM2902	1	4	Vcm to V-, Not R	0.5	з	26	7	0.18	180	500	0.3790 0.4390 0	MDIP TSSOP SOIC
LM2904	1	2	Vcm to V-, Not R	0.1	з	26	7	0.25	250	500	0.2960[0.3360]	MDIP SOIC NARROV
LM301A	1	1	Vcm to V+, Not F	0.5	10	36	7.5	1.8	1800	300	3.9300 0.3030	MDIP TO-99
LM318	15	1	Not Rail to Rail	70	10	40	10	4.5	300	750		MDIP SOIC NARROV

Part	Gain Bandwidth T (MHz)	Channels (Channels)	Input OutputType	Slew Rate (Volts/usec)	Supply Min (Volt)	Supply Max (Volt)	Offset Voltage max, 250 (mV)	Supply Current Per Channel (mA)	PowerWise Rating 2 (uA/MHz)	Max Input Bias Current (nA)	Price(1K US\$)*	Packaging
LM321	1	1	Vcm to V-, Not R	0.5	з	32	7	0.45	450	500	0.2120	SOT-23
LM324	1	4	Vcm to V-, Not R	0.5	з	32	3 7	0.18	180	200 500	3.9000 0.4090 0	TSSOP MDIP CERDI
LM346	1,2	4	Not Rail to Rail	0.4	з	36	6	0.035	29.2	250	0.6120	SOIC NARROW
LF147	4	4	Vcm to V+, Not F	13	5	44	5	1.8	450	10	10.3000 5.2400	CERDIP
LM358	1	2	Vcm to V-, Not R	0.1	з	32	3 7	0.25	250	200 500	0.2800[0.2960]	MDIP SOIC NARROW
LM359	400	2	Not Rail to Rail	60	5	22		18.5	46.3	30000	1.3500	SOIC NARROW
LM392	1	2	Vcm to V-, Not R	0.1	з	32	5	0.5	500	400	0.4580 0.5830	MDIP SOIC NARROW
LM4250	0.25	1	Not Rail to Rail	0.2	2	36	6	0.01	40	20	0.4380 0.4660	MDIP SOIC NARROW
LM432	1	2	Vcm to V-, Not R	0.5	2.5	16	4	0.075	75	50	0.4700	SOIC NARROW
LM611	0.8	1	Vcm to V-, Not R	0.7	4	36	5	0.21	262.6	40	0.9500 0.8400	SOIC NARROW
LM613	0.8	2	Vcm to V-, Not R	0.7	4	36	5	0.112	140	40	1.5000	SOIC WIDE
LM614	0.8	4	Vcm to V-, Not R	0.7	4	36	5	0.112	140	40	1.4300	SOIC WIDE DIE
LM741	1	1	Not Rail to Rail	0.5	10	44 36	5 6	1.7	1700	800 1500	0.2500 11.4000	MDIP CERDIP TO-99
LM747	1.5	2	Not Rail to Rail	0.5	10	44	5	1.7	1133.3	1500	9.3000 13.7000	CERDIP WAFER TO-:
LM748	1	1	Not Rail to Rail	0.5	10	44	5	1.9	1900	1500	13.1000	ТО-99
LM833	15	2	Not Rail to Rail	7	10	36	5	2.5	166.7	1050	0.3330 0.3130 0	MDIP MINI SOIC SO
LM837	25	4	Not Rail to Rail	10	10	36	5	2.5	100	1050	0.5720	SOIC NARROW
LME49710	55	1	Not Rail to Rail	20	5	34	0.7	4.8	87.3	72	0.9000 5.5000	MDIP SOIC NARROW
LME49720	55	2	Not Rail to Rail	20	5	34	0.7	5	90.9	72	10.5000 1.9000	MDIP SOIC NARROW
LME49740	55	4	Not Rail to Rail	20	5	34	0.7	4.62	84	72	4.0000	MDIP SOIC NARROW
LMV831	3.3	1	Vcm to V-, R-R (2	2.7	5.5	1	0.25	72	0.01	0.5500	SC-70
LMV832	3.3	2	Vcm to V-, R-R (2	2.7	5.5	1	0.24	72	0.01	0.7900	MINI SOIC
LMV834	3,3	4	Vcm to V-, R-R (2	2.7	5.5	1	0.24	73	0.5	1.1000	TSSOP
LMV851	8	1	Vcm to V-, R-R (4.5	2.7	5.5	1	0.41	51.3	0.5	0.6300	SC-70
LM¥852	8	2	Vcm to V-, R-R (2.7	5.5	1	0.41	51.3	0.5	0.9000	MINI SOIC
LM¥854	8	4	Vcm to V-, R-R (2.7	5.5	1	0.41	51.3	0.5	1.2000	TSSOP
LMV861	30	1	Vcm to V-, R-R (18	2.7	5.5	1	2.25	75	0.5	0.6700	SC-70
LMV862	30	2	Vcm to V-, R-R (18	2.7	5.5	1	2.25	75	0.5	0.9500	MINI SOIC
LP2902	0.1	4	Vcm to V-, Not R	0.05	3	26	10	0.02125	212.5	40	0.5380 0.56	90 MDIP SOIC NARROW
LP324	0.1	4	Vcm to V-, Not R	0.05	з	32	9	0.02125	212.5	20	0.3790 0.48	50 MDIP TSSOP SOIC N
TL082	4	2	Vcm to V+, Not P	13	10 12	36	15	1.75	437.5	8	0.4250 0.55	50 MDIP SOIC NARROW

Micropower < 200uA (36/36)

4

Search Panel											
Voltage max, 250 (mV)	Max Input Bias Current (nA)	CMRR (dB)	PSRR (dB)	Channels (Channels)	Supply Current Per Channel (mA)	PowerWise Rating 2 (uA/MHz)	Price(1K US\$)*	Packaging			
10	300 <> <= 300	120 <= 120	120 <= 120	4 📢 <= 4	0.425 <> <= 0.425	500 <= 500	2.55 📢 <= 2.55	DIE			
Go	Go	>= 85	>= 85	>= 1	>= 0.000	>= 9.2	>= 0.31	MDIP MINI SOIC			
	0.001	85 🖉 🐨	85 4 60	1 0 60	0.0004	9.2	0.31 0	✓ SC-70			

Part	Supply Min (Volt) 🔺	Supply Max (Volt)	Gain Bandwidth (MHz)	Offset Voltage max, 25€ (mV)	Max Input Bias Current (nA)	CMRR (dB)	PSRR (dB)	Channels (Channels)	Supply Current Per Channel (mA)	PowerWise Rating 2 (uA/MHz)	Price(1K US\$)*	Packaging
LMP2234	1.6	5	0.13	0.15	0.001	97	120	4	0.009	69.2	1.9300 2.4000	TSSOP SOIC NARRO
LM4250	2	36	0.25	6	20			1	0.01	40	0.4380 0.4660	MDIP SOIC NARROW
LMC6022	4.75	15.5	0.35	9	0.2			2	0.043	122.9	0.5720	SOIC NARROW
LMC6024	4.75	15.5	0.35	9	0.2			4	0.04	114.3	0.6720	SOIC NARROW
LMC6041	4.5	15.5	0.075	3 6	0.004			1	0.014	186.7	1.0700 0.7580	MDIP SOIC NARROW
LMC6042	4.5	15.5	0.1	3 6	0.004			2	0.01	100	1.1800 0.9150 0	MDIP SOIC NARROW
LMC6044	4.5	15.5	0.1	3 6	0.004			4	0.01	100	1.1300 1.1100 :	MDIP SOIC NARROW
LMC6061	4.5	15.5	0.1	0.35 0.8	0.004 0.1	85	85	1	0.02	200	0.5510 0.7200	SOIC NARROW
LMC6062	4.5	15.5	0.1	0.350.8	0.0040.1	85	85	2	0.016	160	1.2100 1.1300 :	MDIP SOIC NARROW
LMC6064	4.5	15.5	0.1	0.35 0.8	0.004 0.1	85	85	4	0.016 0.02	200 160	1.9600 1.8800 2	MDIP SOIC NARROW
LMC6442	1.8	11	0.01	3 7	0.004			2	0.00095	95	1.0200	MDIP SOIC NARROW
LMC6462	3	15.5	0.05	3 0.5	0.005	85	85	2	0.02	400	1.0100 1.3000 :	MDIP SOIC NARROW
LMC6464	3	15.5	0.05	3 0.5	0.005	85	85	4	0.02	400	1.8300 2.0200 :	MDIP SOIC NARROW
LMC6572	2.7	10	0.22	3 7	0.01			2	0.038	172.7	0.5910 0.7780	SOIC NARROW
LMC6574	2.7	10	0.22	3 7	0.01			4	0.038	172.7	1.9400 1.2000	SOIC NARROW
LMC7111	2.7	11	0.05	7	0.02			1	0.025	500	0.4450	SOT-23
LMP2231	1.6	5.5	0.13	0.15	0.001	97	120	1	0.016	123	1.4000 0.9500	SOIC NARROW SOT
LMP2232	1.6	5.5	0.13	0.15	0.003	97	120	2	0.014	107.7	1.4000 1.9000	MINI SOIC SOIC NAI
LM346	3	36	1.2	6	250			4	0.035	29.2	0.6120	SOIC NARROW
LMV551	2,7	5.5	з	з	38	93	90	1	0.037	12.3	0.4500	SC-70 SOT-23
LMV552	2.7	5.5	з	3	38	93	90	2	0.037	12.3	0.5900	MINI SOIC
LM¥554	2.7	5.0	3	3	38	93	90	4	0.037	12.3	0.7900	TSSOP
LMV641	2.7	12	10	0.5	105	120	100	1	0.158	15.8	0.6200	SOIC NARROW SC-7
LMV651	2.7	5.5	12	1.5	100			1	0.11	9.2	0.4500	SC-70
LMV652	2.7	5.5	12	1.5	100			2	0.11	9.2	0.5900	MINI SOIC
LM¥654	2.7	5.5	12	1.8	300			4	0.119	9.2	0.9500	TSSOP
LP2902	з	26	0.1	10	40			4	0.02125	212.5	0.5380 0.5690	MDIP SOIC NARROV
LP324	3	32	0.1	9	20			4	0.02125	212.5	0.3790 0.4850	MDIP TSSOP SOIC
LPC660	5	15	0.35	3 6	0.004			4	0.04	114.3	1.1200 1.4400	SOIC NARROW
LPC662	5	15	0.35	3 6	0.004			2	0.043	122.9	1.2000 0.9300	SOIC NARROW
LPV321	2.7	5	0.152	7	60			1	0.009	59.2	0.3100	SC-70 SOT-23
LPV324	2.7	5	0.152	7	60			4	0.0075	49.3	0.4860	TSSOP SOIC NARRO
LPV358	2.7	5	0.152	7	60			2	0.007	46.1	0.3960	MINI SOIC SOIC NA
LPV511	2.7	12	0.027	з	1.9			1	0.00097	18.7	0.4500	SC-70
LPV521	1.6	5.5	0.0062	1	0.001	102	109	1	0.0004	64.5	0.6500	SC-70
LPV531	2.7	5	4.6	4.5	0.01			1	0.425	92.4	0.4500	тзот

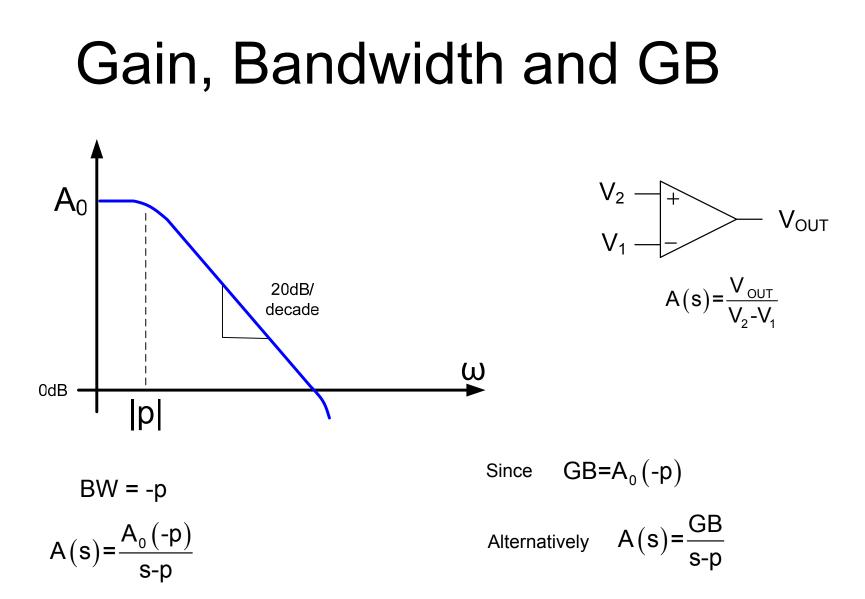
Model	Туре	Supply Min (V)	Supply Max (V)	Output Curren t (mA)	Supply Current/ Channel (mA)	GB (MHz)	Power (mW)	Min Price \$	Max Price \$
LMP2234 (quad)	Micro- power	1.6	5	5	.009	0.13	.056 ¹	1.93	2.40
LM741	General Purpose	10	36	25	1.7	1.0	60 ²	0.25	11.40
LM3886	Power	18	84	11,500	50	3.0	125000 ²	3.30	
LMP 2231	Low Voltage	1.6	5.1	5	.01	0.13	.018 ¹	0.95	1.40
LMH 6624	High Speed	5	12	100	11.4	1500	72	1.86	

Widely Varying Performance Characteristics (selected comparison)

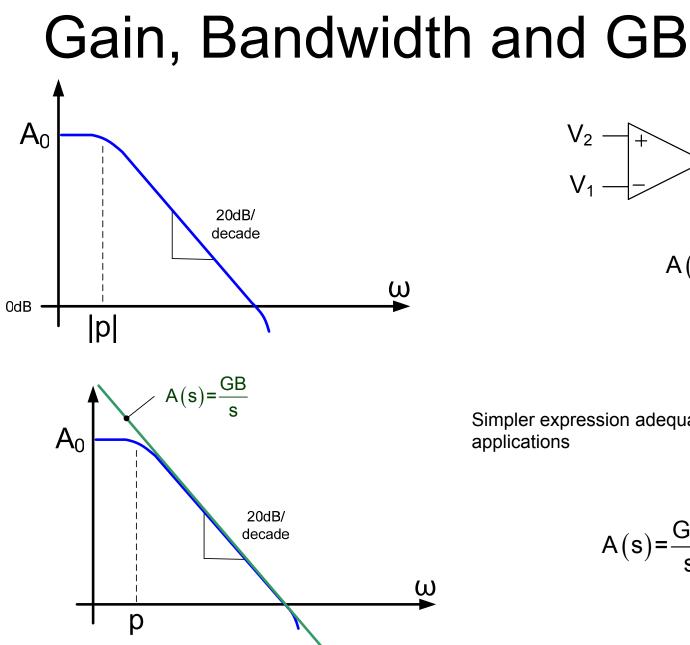
¹ Minimum ² Maximum

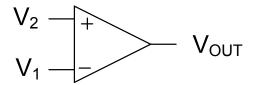
Nonideal Op Amp Characteristics

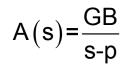
Critical Parameters

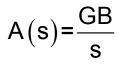

- Gain-Bandwidth Product (GB)
- Offset Voltage
- Input Voltage Range
- Output Voltage Range
- Output Saturation Current
- Slew Rate

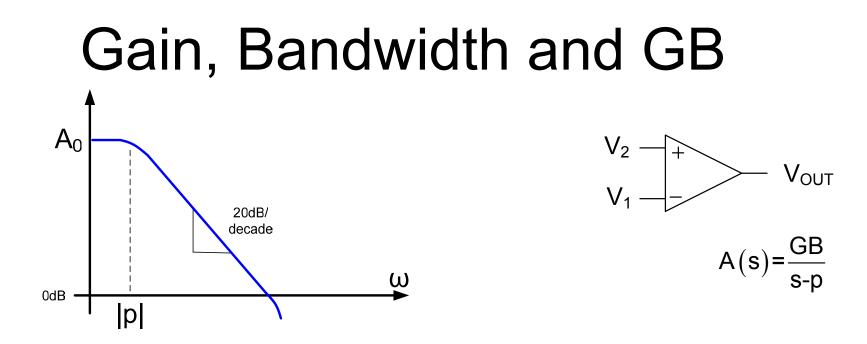
Usually Less Critical Parameters

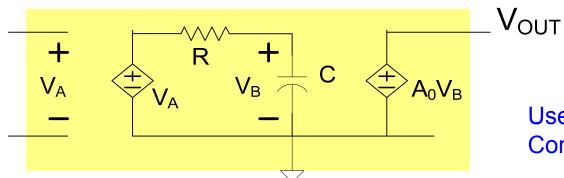

- DC voltage gain , A_0
- 3dB Bandwidth, BW
- Common Mode Rejection Ratio (CMRR)
- Power Supply Rejection Ratio (PSRR)


GB=A₀BW


- R_{IN} and R_{OUT}
- Bias Currents
- Full Power Bandwidth
- Compensation

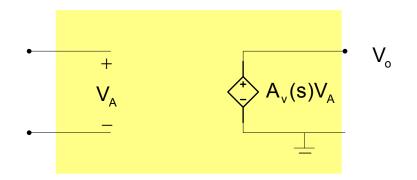

Almost all op amps are designed to have a first-order response down to unity gain

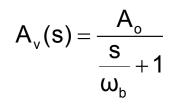



Simpler expression adequate for most applications

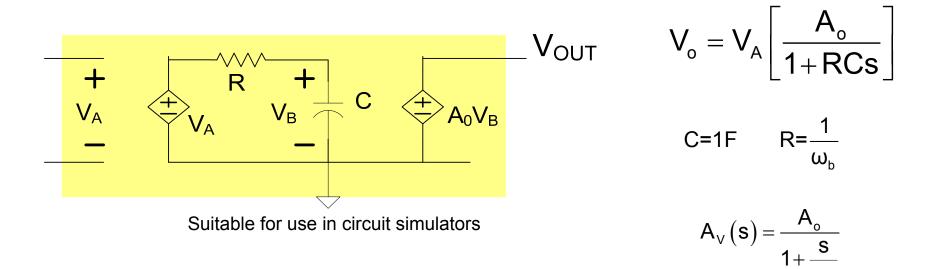
Macromodel of OA with Gain and BW effects

An equivalent circuit that performs same as actual device

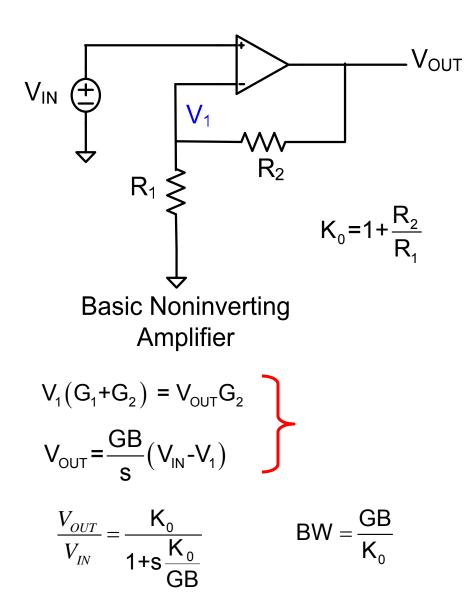


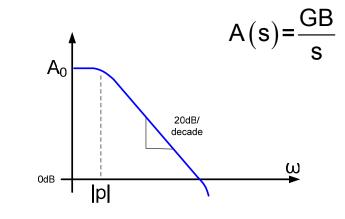

 $A(s) = \frac{A_0(-p)}{s-p}$

C=1 R= A_0 GB⁻¹


Useful for simulation Component values not of concern

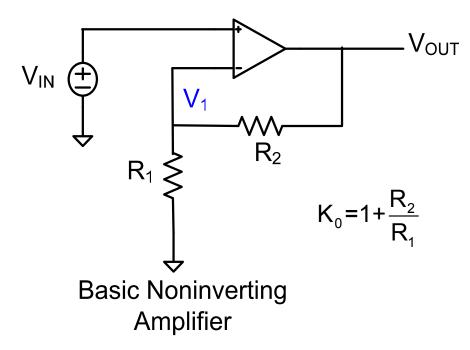
Macromodels of op amp that includes effects of frequency dependent gain





Suitable for hand analysis or Matlab/Excel/C++ simulations

Effects of GB on basic circuits

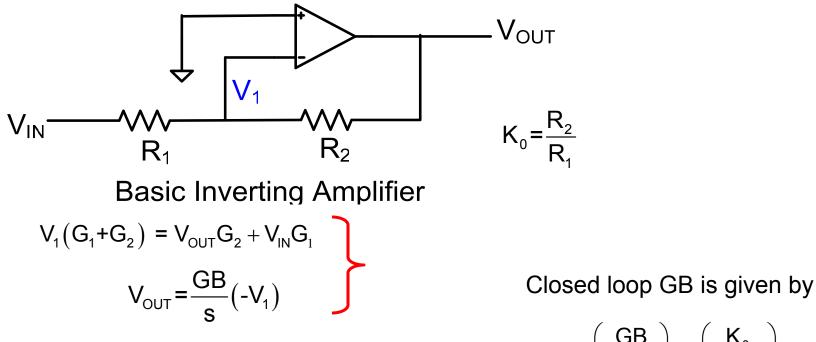


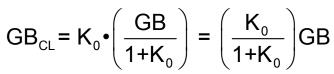
Closed loop GB is given by

$$GB_{CL} = K_0 \cdot \left(\frac{GB}{K_0}\right) = GB$$

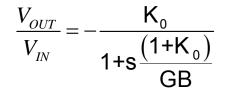
Closed loop GB for basic noninverting amplifier is equal to the open-loop GB independent of K_0

Effects of GB on basic circuits

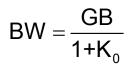


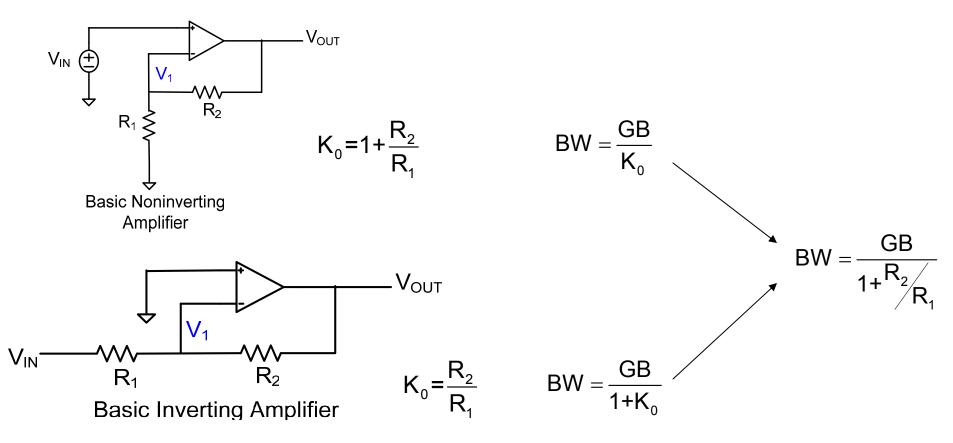

BW decreases to GB/K₀

Example: If an op amp with a GB of 5MHz is use to design a basic noninverting amplifier with a dc gain of 10, what is the closed-loop bandwidth?

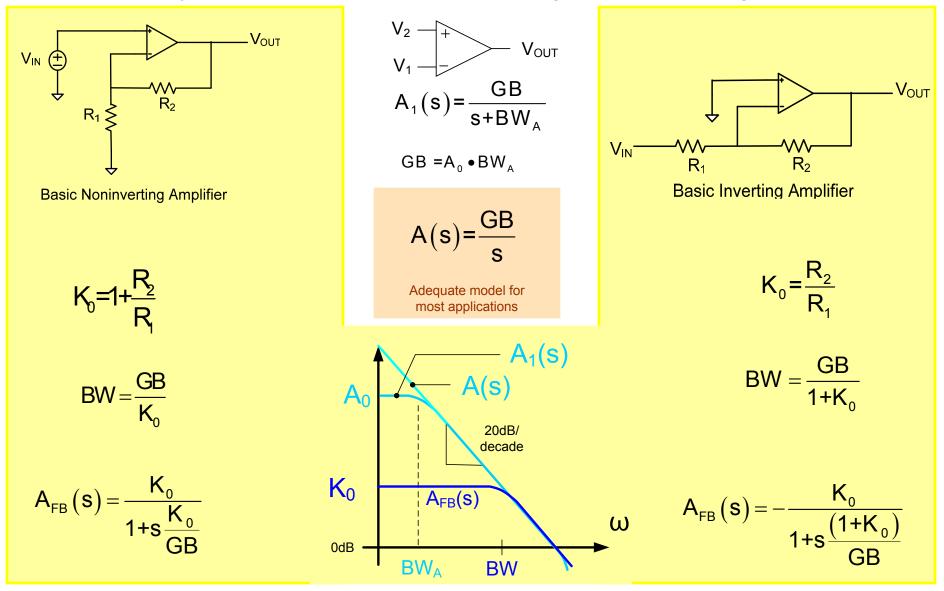

$$GB_{CL} = K_0 \bullet BW = K_0 \bullet \left(\frac{GB}{K_0}\right) = GB \longrightarrow BW = \frac{GB}{K_0} = \frac{5MHz}{10} = 500 \text{ KHz}$$

Example: If the closed-loop gain is increased, what happens to the BW?


Effects of GB on basic circuits



Closed loop gain +1 times closed loop bandwidth is equal to the open-loop GB



Effects of GB on basic circuits

- For a given gain, the BW of the BNA is larger than that of the BIA
- Difference becomes significant when gain is small
- In terms of resistor values, expressions are identical
- In both cases, BW decreases rapidly with gain and is a serious concern about amplifiers
- Only way to improve BW with these structures is to get better Op Amp

Summary of Effects of GB on Basic Inverting and Noninverting Amplifiers

End of Lecture 16